A novel method based on a combination of discrete wavelet transforms, group-based Sparse and tensor decomposition for Heart Sound Classification

  • سال انتشار: 1402
  • محل انتشار: فصلنامه پردازش سیگنال و انرژیهای تجدیدپذیر، دوره: 7، شماره: 4
  • کد COI اختصاصی: JR_SPRE-7-4_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 140
دانلود فایل این مقاله

نویسندگان

Shirin Razmi

Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Ramin Barati

Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Hamid Azad

Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

چکیده

Listening to the sound signals of the heart is considered one of the most non-invasive and easy ways to diagnose the irregularities of the human heart, the correct analysis of which requires the knowledge and experience of a specialist doctor. The purpose of this paper is to design and implement a computer-aided diagnosis (CAD) system for detecting and classifying normal and abnormal heart sounds from phonocardiogram (PCG) signals. To perform experiments, the PhysioNet database was used. In the pre-processing step, noise and environmental disturbances in the PCG signals are removed using band-pass Butterworth filters. Then, discrete wavelet transforms (DWT), group-based Sparse, and tensor decomposition are used to extract features from PCG signals. Finally, the support vector machine (SVM), the k-nearest neighbors (KNN), naive Bayes (NB), the classification and regression tree (CART), and multi-layer perceptron (MLP) were used for the classification step. The employment of DWT, group-based sparse, and tensor decomposition for detection features is the novelty of this paper. The proposed method demonstrated better performance compared to other methods used in different papers. The proposed DWT, group-based sparse and tensor decomposition-NB method had a high accuracy rate of ۹۵.۳%. Also, the combination of PCG feature extraction methods increases the accuracy of the CAD system in diagnosing abnormal heart sounds. The proposed method in this paper uses different methods for extracting features, and their classification has high accuracy for abnormal sound detection.

کلیدواژه ها

Classification of heart sounds, murmur, Group-based sparse, tensor decom-position, Discrete Wavelet transform

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.