Ensemble-RNN: A Robust Framework for DDoS Detection in Cloud Environment

  • سال انتشار: 1402
  • محل انتشار: مجله مهندسی برق مجلسی، دوره: 17، شماره: 4
  • کد COI اختصاصی: JR_MJEE-17-4_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 119
دانلود فایل این مقاله

نویسندگان

Asha Songa

VIT-AP UNIVERSITY Inavolu, Beside AP Secretariat, Amaravati AP, India

Ganesh Karri

VIT-AP University, Inavolu, Beside AP Secretariat, Amaravati AP, India

چکیده

The advent of cloud computing has made it simpler for users to gain access to data regardless of their physical location. It works for as long as they have access to the internet through an approach where the users pay based on how they use these resources in a model referred to as “pay-as-per-usage”. Despite all these advantages, cloud computing has its shortcomings. The biggest concern today is the security risks associated with the cloud. One of the biggest problems that might arise with cloud services availability is Distributed Denial of Service attacks (DDoS). DDoS attacks work by multiple machines attacking the user by sending packets with large data overhead. Therefore, the network is overwhelmed with unwanted traffic. This paper proposes an intrusion detection framework using Ensemble feature selection with RNN (ERNN) to tackle the problem at hand. It combines an Ensemble of multiple Machine Learning (ML) algorithms with a Recurrent Neural Network (RNN).  The framework aims to address the issue by selecting the most relevant features using the ensemble of six ML algorithms. These selected features are then used to classify the network traffic as either normal or attack, employing RNN. The effectiveness of the proposed model is evaluated using the CICDDoS۲۰۱۹ dataset, which contains new types of attacks. To assess the performance of the model, metrics like precision, accuracy, F-۱ score, and recall are taken into consideration.

کلیدواژه ها

cloud computing, DDoS attacks, Machine Learning, deep learning techniques

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.