Improvement of peptide-HLA class I prediction using transformers
سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 87
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS11_019
تاریخ نمایه سازی: 19 آذر 1402
چکیده مقاله:
Since Human leukocyte antigen (HLA) can bind foreign peptides to present them to specialized immune cells andinitiate an immune response, accurate prediction of binding between HLA and neoepitope is critical for targetidentification in immunotherapy . However, current algorithms for predicting neoantigens are resulting in high falsepositives and most of them are limited by fixing model input length. In this study, we proposed an allele-specificand transformer-based model to predict antigen presentation in the context of HLA class I alleles. This modelbenefits from ProtBERT which is a pre-trained transformer on proteins to encode peptides and does not needto fix peptide length. Then, we use random forest and multilayer perceptron networks as a classifier on encodedpeptides. The dataset we used was obtained from the immune epitope database (IEDB) as in previous works andincludes peptide and HLA pairs of ۲۰ high-frequency HLA-A and HLA-B allotypes. Results show that our proposedmodel outperforms the former methods in terms of positive predictive value (PPV) (۰.۵۸ vs.۰.۳۸ on average). Ourbest result was obtained on HLA-A*۰۱:۰۱ with a PPV value of ۰.۸۷۲, which is ۰.۲۸۶ and ۰.۲۶۷ in APPM andnetMHCpan-۴.۰ models, respectively. Also, using a pre-trained encoder allows the model to predict more quicklyand with less computational e↵ort. On the other hand, these results confirm that transformers can be used as anembedding that extracts structural properties from the sequence. Since our model only requires the peptide sequenceof HLA-peptide binding pairs, it can be applied to other binding problems without the need for structure data
کلیدواژه ها:
نویسندگان
mahsa saadat
Amirkabir university of technology
fatemeh zare-mirakabad
Amirkabir university of technology
nazanin hosseinkhan
Iran university of medicalsciences