Intelligent Data Classification Using Optimized Fuzzy Neural Network and Improved Cuckoo Search Optimization

  • سال انتشار: 1402
  • محل انتشار: مجله سیستم های فازی، دوره: 20، شماره: 6
  • کد COI اختصاصی: JR_IJFS-20-6_009
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 208
دانلود فایل این مقاله

نویسندگان

Pramoda Patro

Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Hyderabad, Telangana, India, ۵۰۰۰۷۵

Krishna Kumar

۲Department of Applied Science and Humanities, MIT School of engineering, MIT Art Design and Technology University, Loni Kalbhor, Pune,India

G. Suresh Kumar

Department of Engineering Mathematics, KoneruLakshmaiah Education Foundation Vaddeswaram, Guntur, Andhra Pradesh, India

Aditya Kumar Sahu

Department of Computer science and Engineering, Amrita School of Computing, Amaravati Campus, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, ۵۲۲۵۰۳, India

چکیده

In data mining, classification is one of the most important steps in predicting the target class. Classification is performed by an improved model in existing work in which feature selection is performed based on the bat optimization method to increase the classification accuracy. And an Enhanced Neural Network is used for classification which includes Intuitive, Interpretable Correlated-Contours fuzzy rules. And an effective model is created based on the extraction of fuzzy rules, where data partitioning is performed via a similarity-based directional component. However, the dataset used for experimentation is noisy as well as incomplete data values. Due to incompleteness, knowledge discovery is obstructed and the result of classification is affected as well. And bat provides very slow convergence and easily falls into local optima. To solve this issue, an improved framework is introduced in which missing value imputation is performed by using k means clustering, and then for feature selection, an improved cuckoo search optimization is used. An enhanced classifier based on fuzzy logic and Alex Net neural network structure (F-ANNS) is used for classification and hybrid Ant Colony Particle Swarm Optimization (HASO) is used for optimizing parameters of the AlexNet neural network classifier. The results show that the proposed work is more effective in precision, recall, accuracy, and f-measure as shown by experimental results.

کلیدواژه ها

Hybrid ant colony particle swarm optimization, AlexNet neural network, cuckoo search, missing data Imputation, Artificial neural network

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.