A New Weak Slater Constraint Qualification for Non-Smooth Multi-Objective Semi-Infinite Programming Problems
عنوان مقاله: A New Weak Slater Constraint Qualification for Non-Smooth Multi-Objective Semi-Infinite Programming Problems
شناسه ملی مقاله: JR_COAM-8-2_004
منتشر شده در در سال 1402
شناسه ملی مقاله: JR_COAM-8-2_004
منتشر شده در در سال 1402
مشخصات نویسندگان مقاله:
Hamed Soroush - Department of Mathematics, Payame Noor University (PNU), P.O. BOX ۱۹۳۹۵-۴۶۹۷, Tehran, Iran.
خلاصه مقاله:
Hamed Soroush - Department of Mathematics, Payame Noor University (PNU), P.O. BOX ۱۹۳۹۵-۴۶۹۷, Tehran, Iran.
This paper addresses a non-smooth multi-objective semi-infinite programming problem that involves a feasible set defined by inequality constraints. Our focus is on introducing a new weak Slater constraint qualification and deriving the necessary and sufficient conditions for (weakly, properly) efficient solutions to the problem using (weak and strong) Karush-Kuhn-Tucker types. Additionally, we present two duals of the Mond-Weir type for the problem and provide (weak and strong) duality results for them. All of the results are given in terms of Clarke subdifferential.
کلمات کلیدی: Semi-infinite programming, Multiobjective optimization, Constraint qualification, Optimality conditions
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1844825/