CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

A New Weak Slater Constraint Qualification for Non-Smooth Multi-Objective Semi-Infinite Programming Problems

عنوان مقاله: A New Weak Slater Constraint Qualification for Non-Smooth Multi-Objective Semi-Infinite Programming Problems
شناسه ملی مقاله: JR_COAM-8-2_004
منتشر شده در در سال 1402
مشخصات نویسندگان مقاله:

Hamed Soroush - Department of Mathematics‎, ‎Payame Noor University (PNU)‎, ‎P.O‎. ‎BOX ۱۹۳۹۵-۴۶۹۷‎, ‎Tehran‎, ‎Iran‎.

خلاصه مقاله:
This paper addresses a non-smooth multi-objective semi-infinite programming problem that involves a feasible set defined by inequality constraints‎. ‎Our focus is on introducing a new weak Slater constraint qualification and deriving the necessary and sufficient conditions for (weakly‎, ‎properly) efficient solutions to the problem using (weak and strong) Karush-Kuhn-Tucker types‎. ‎Additionally‎, ‎we present two duals of the Mond-Weir type for the problem and provide (weak and strong) duality results for them‎. ‎All of the results are given in terms of Clarke subdifferential‎.

کلمات کلیدی:
Semi-infinite programming‎, ‎Multiobjective optimization‎, ‎Constraint qualification‎, ‎Optimality conditions

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1844825/