Prediction of the Experimental Data for Removal of Organic Pesticides by Carbon Nanoparticle Synthesized from Pomegranate Peel using Artificial Neural Networks
- سال انتشار: 1396
- محل انتشار: مجله علوم پزشکی ایران، دوره: 6، شماره: 1
- کد COI اختصاصی: JR_JHES-6-1_005
- زبان مقاله: انگلیسی
- تعداد مشاهده: 174
نویسندگان
Department of Chemistry, Islamic Azad University, Saveh Branch, Saveh
چکیده
Background and purpose: The present study is aimed to investigate the prediction of the experimental data for the removal of agricultural pesticides including three herbicides Trifluralin, Glyphosate, and ۲,۴-Dichlorophenoxyacetic acid from aqueous solution by carbon nanoparticles synthesized from pomegranate peel using artificial neural network. Materials and Methods: Removal studies were conducted under the different experimental conditions in pH = ۴-۸, contact time of ۰-۲۵ minutes, and the initial concentrations in the range of ۵۰-۲۵۰ mg/L. In the present study, artificial neural network, back propagation algorithm, and Levenberg Marquardt training approach were used. Results: The results showed that the removal of agricultural pesticides Trifluralin, Glyphosate and ۲,۴D depended on pH such that the optimal removal efficiency observed for pesticides Trifluralin, Glyphosate, and ۲,۴D in pH=۸ was ۹۲.۶, ۷۸, and ۹۲%, respectively. The optimal adsorbent weight was also found to be ۰.۵ g for pesticides Trifluralin, Glyphosate, and ۲,۴D so that the removal efficiency was equal to ۹۷, ۹۸.۸ and ۹۸.۴% within ۲۰ minutes. In the initial concentration of ۵۰ mg/L, the removal efficiency was respectively equal to ۸۸, ۹۴, and ۹۲% for Trifluralin, Glyphosate, and ۲,۴D. The results also showed that the experimental data followed from both isotherm models. Conclusions: The artificial neural network successfully predicts the data, and there is a good agreement between experimental and predicted data.کلیدواژه ها
Removal Efficiency, Artificial Neural Networks, Isotherm Modelsاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.