CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Evaluation of the Specific Ignition Delay Time for the DMAZ withNanoparticles for the Rocket Engine

عنوان مقاله: Evaluation of the Specific Ignition Delay Time for the DMAZ withNanoparticles for the Rocket Engine
شناسه ملی مقاله: IICC22_119
منتشر شده در بیست و دومین کنفرانس شیمی معدنی ایران در سال 1402
مشخصات نویسندگان مقاله:

Ali Farrokhi - Materials and Energy Research Center, P.O. Box ۳۱۷۸۷-۳۱۶, Tehran, Iran

خلاصه مقاله:
Hydrazine, monomethyl hydrazine (MMH), and unsymmetrical dimethyl hydrazine (UDMH),either individually or in combination, have been widely utilised in space programmes [۱]. Theutilisation of hydrazine-based fuels presents a significant peril to the well-being of individualsengaged in the handling, storage, and conveyance of said fuels, due to their acute toxicity andpotential carcinogenic properties. As a result, it is preferable to substitute them with alternativehypergolic liquid fuels that exhibit comparable ignition and combustion performance, but are notcarcinogenic and possess significantly lower toxicity levels than hydrazine-based fuels [۲].Numerous studies have been conducted in the pursuit of viable alternative hypergolic fuels.Notably, amine azides have garnered significant interest in this regard. One example of arepresentative amine azide is DMAZ, which stands for dimethyl amino ethyl azide. According tothe LD۵۰ acute toxicity, DMAZ exhibits approximately thirty times lower toxicity than MMH.Additionally, DMAZ outperforms MMH in various other performance measures [۳].Dimethylaminoethyl azide, sometimes known as DMAZ, is an excellent alternative to thehydrazine group in the aerospace sector. However, with the liquid oxidizer, white fuming nitricacid (WFNA), it has a reasonably long ignition delay period, and it is nonhypergolic when used inconjunction with inhibited red fuming nitric acid (IRFNA). In this study, the ignition delay periodsof DMAZ were reduced by the incorporation of several nanoparticles, including metal oxide(including Fe, Zr, B, Al, Cu, and Ce), carbon nanostructures, multi-walled carbon nanotubes(MWCNT), graphene, and graphene oxide without surfactant. According to the findings, theignition delay time of DMAZ was reduced from ۹۰ milliseconds to just ۱۱.۹ milliseconds whenϒ-Al۲O۳ was added.

کلمات کلیدی:
Metal Oxid, Nanoparticles, ϒ-Al۲O۳, DMAZ

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1832293/