Analytical and numerical solution of the nonlinear differential equation for self-igniting reaction diffusion systems: Mathematical modelling approach

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 355

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-10_011

تاریخ نمایه سازی: 14 آبان 1402

چکیده مقاله:

Mathematical models of self-igniting reaction diffusion systems are discussed theoretically. The model comprises a system of reaction-diffusion equations that are nonlinearly connected. The efficient and easily accessible analytical technique AGM was used to solve the steady-state non-linear equations for a self-igniting reaction diffusion system. The proposed method’s efficiency and accuracy will be tested against some of the widely used numerical approaches found in the literature Herein, we present the generalized approximate analytical solution for the concentration of gas reactant and temperature for the experimental values of heat of reaction, thermal Thiele modulus and activation energy parameters. Using the Matlab / Scilab program, we also derive the numerical solution to this problem. Simulated data and previously published limiting cases are used to validate the new analytical results. A reasonable agreement is observed.

نویسندگان

Saravanakumar S

Department of Science and Humanities, Sri Ramakrishna Institute of Technology, Coimbatore, India

Eswari A

Department of Physical Science and Information Technology, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, India

Haydar Akca

Abu Dhabi University, College of Arts and Sciences, Department of Applied Sciences and Mathematics, Abu Dhabi, UAE

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Abukhaled, Variational iteration method for nonlinear singular two-point boundary ...
  • M. Abukhaled and S.A. Khuri, An efficient semi-analytical solution of ...
  • M. Abukhaled and S.A. Khuri, Efficient numerical treatment of a ...
  • M. Abukhaled and S.A. Khuri, A Fast Convergent Semi-analytic Method ...
  • M.R. Akbari, D.D. Ganji, M. Nimafar, and A.R. Ahmadi, Significant ...
  • V. Ananthaswamy and S. Narmatha, Comparison between the new homotopy ...
  • S. Berkan, S.R. Hoseini, and D.D. Ganji, Analytical investigation of ...
  • C.L. Chen and Y.C. Liu, Solution of two-point boundary-value problems ...
  • G. Continillo, V. Faraoni, P.L. Maffettone, and S. Crescitelli, Non-linear ...
  • G. Continillo, P.L. Maffettone, and S. Crescitelli, First Conference on ...
  • G. Continillo, P.L. Maffettone, and S. Crescitelli, On the numerical ...
  • G. Continillo, P. L. Maffettone, and S. Crescitelli, On the ...
  • G. Continillo, P.L. Maffettone, and S. Crescitelli, in ICheaP-۲, C. ...
  • R. Derakhshan, A. Shojaei, K. Hosseinzadeh, M. Nimafar, and D.D. ...
  • P. Felicia Shirly, S. Narmatha, and L. Rajendran, Analytical solution ...
  • C. Gaetano and G. Giovanni, Characterization of Chaotic Dynamics in ...
  • J.H. He, Taylor series solution for a third order boundary ...
  • J.H. He and X.H. Wu, Exp-function method for nonlinear wave ...
  • P. Jeyabarathi, M. Kannan, and L. Rajendran, Approximate analytical solutions ...
  • S. Liao, On the homotopy analysis method for nonlinear problems, ...
  • S. Padma, N. Mehala, A. Eswari, M. E.G. Lyons, B. ...
  • S. Vinolyn Sylvia, R. Joy Salomi, L. Rajendran, and M. ...
  • نمایش کامل مراجع