Optimal prediction in the diagnosis of existing heart diseases using machine learning: outlier data strategies

  • سال انتشار: 1402
  • محل انتشار: مجله بین المللی اطلاعات تصمیم گیری، دوره: 1، شماره: 2
  • کد COI اختصاصی: JR_IJDI-1-2_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 320
دانلود فایل این مقاله

نویسندگان

Omid Rahmani

M.Sc. Student in Engineering, Industrial Engineering Majoring In Healthcare Systems, K. N. Toosi University, Tehran, Iran

seyyed amir mahdi ghoreishi zadeh

M.Sc. Student in Industrial Engineering Majoring In Macro Engineering systems, K. N. Toosi University, Tehran, Iran

Mostafa Setak

Associate Professor, Department of Industrial Engineering, Economic and Social Systems, K. N. Toosi,Tehran,Iran

چکیده

Heart disease is a prevalent and life-threatening condition that poses significant challenges to healthcare systems worldwide. Accurate and timely diagnosis of heart disease is crucial for effective treatment and patient management. In recent years, machine learning algorithms have emerged as powerful tools for predicting and identifying individuals at risk of heart disease. This article highlights the importance of heart disease diagnosis and explores the potential of machine learning algorithms in enhancing the diagnosis of heart disease accuracy. This article presents a study to develop a model for predicting heart disease in the Cleveland patient dataset. The innovation of this research involved identifying and handling outlier data using Winsorized and Logarithmic transformation methods. We also used Wrapper and Embedded methods to determine the most critical features for diagnosing heart disease. In addition to the usual features, Exercise-induced angina and No. of major vessels were found to be important. We then compared the performance of four machine learning algorithms, including KNN, Naïve Bayes' Classifier, Decision Tree, and Support Vector Classifier to determine the best algorithm for predicting heart disease. The findings showed that the Decision Tree algorithm had the best performance with an accuracy of ۹۷.۹۵%.

کلیدواژه ها

Heart disease, Naïve Bayes' Classifier, Decision tree, Support Vector Classifier, Winsorized and Logarithmic transformation methods, Wrapper and Embedded methods

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.