Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh

  • سال انتشار: 1397
  • محل انتشار: مجله فیزیک زمین و فضا، دوره: 44، شماره: 4
  • کد COI اختصاصی: JR_JESPHYS-44-4_010
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 159
دانلود فایل این مقاله

نویسندگان

Iman Zabbah

Lecturer, Department of Computer, Torbat-e Heydariyeh branch, Islamic Azad University, Torbat-e Heydariyeh, Iran

Ali Reza Roshani

Assistant Professor, Department of Water Engineering, Torbat-e Heydariyeh branch, Islamic Azad University, Torbat-e Heydariyeh, Iran

Amin Khafage

M.Sc. Graduated, Department of Computer, Torbat-e Heydariyeh branch, Islamic Azad University, Torbat-e Heydariyeh, Iran

چکیده

Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database includes ۷۳۳۶ records situated in ۱۱ features from daily brainstorm data within a twenty year period. The samples were selected based on a case study in Torbat-e Heydariyeh. ۷۰% were chosen for learning and ۳۰% were chosen for taking tests. From ۷۱۸۱ available data, ۷۵% and ۲۵% were used for training and evaluating, respectively. This research studied the performance of different neural networks in order to predict precipitation and then presented an algorithm for combining neural networks with linear and nonlinear methods. After modeling and comparing their results using neural networks, the root mean square error was recorded for each method. In the first modeling, the artificial neural network error was ۰.۰۵, in the second modeling, linear combination of neural networks error was ۰.۰۷, and in the third model, nonlinear combination neural networks error was ۰.۰۰۱. Reducing the error of forecasting precipitation has always been one of the goals of the researchers. This study, with the forecast of precipitation by neural networks, suggested that the use of a more robust method called a nonlinear combination neural network can lead to improve men is in for cast diagnostic accuracy.

کلیدواژه ها

Monthly rainfall, Artificial Neural Networks, experts’ mixture, Torbat-e Heydariyeh Precipitation

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.