تخمین خصوصیات مکانیکی به روش آنالیز آماری، شبکه عصبی مصنوعی و رگرسیون بردار پشتیبان (مطالعه موردی: نمونه های مرتبط به ساختگاه سد مخزنی گدار- خوش)
- سال انتشار: 1401
- محل انتشار: فصلنامه مهندسی عمران و محیط زیست دانشگاه تبریز، دوره: 52، شماره: 109
- کد COI اختصاصی: JR_CEEJ-52-109_015
- زبان مقاله: فارسی
- تعداد مشاهده: 263
نویسندگان
دانشکده مهندسی معدن، دانشگاه صنعتی بیرجند
گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه اراک
گروه مهندسی عمران، واحد فنی و مهندسی، دانشگاه علم و صنعت ایران
گروه مهندسی صنایع، دانشکده مهندسی کامپیوتر و صنایع، دانشگاه صنعتی بیرجند
چکیده
با توجه به مشکلات اجرای آزمایش ها بخصوص در سنگ های ضعیف و هزینه بر بودن این آزمایش ها، می توان با بررسی روابط بین ویژگی های مکانیکی و فیزیکی، هزینه آزمایشات تعیین خصوصیات مکانیکی را کاهش داد. در این پژوهش آزمایش های پتروگرافی، فیزیکی و مکانیکی بر روی ۶۲ مغزه از سنگ های شیل و مارن در ساختگاه سد گدار-خوش انجام شد. در نهایت عملکرد روش های شبکه عصبی مصنوعی (ANN) رگرسیون چند متغیره (MVRA) و رگرسیون بردار پشتیبان (SVR) با تابع کرنل پایه شعاعی (RBF) جهت تخمین UCS، Es بر اساس سرعت موج تراکمی و خصوصیات فیزیکی مقایسه شد. نتایج پتروگرافی نشان داد که کانی ایلیت، فراوانترین نوع کانی رسی می-باشد. نسبت مدول الاستیسیته دینامیکی به استاتیکی نمونه ها برابر با ۸.۵۱ می باشد. همچنین نسبت پواسون دینامیکی به استاتیکی برابر با ۱.۴۱ می باشد. نتایج آنالیز آماری نشان داد که مدول الاستیسیته استاتیکی همبستگی بالایی با مدول الاستیسیته دینامیکی (R=۰.۹۱, RMSE=۰.۲۲, MAPE=۰.۱۴) و سرعت موج برشی همبستگی بالایی با سرعت موج تراکمی (R=۰.۹۸, RMSE=۰.۰۸, MAPE=۰.۰۳) دارند. نتایج رگرسیون چند متغیره نشان داد که هر دو پارامتر UCS و Es دارای همبستگی معنی داری با پارامترهای فیزیکی و سرعت موج تراکمی دارند. بطوریکه ارتباط UCS با این پارامترها بیشتر از ارتباط Es با این پارامتر ها می باشد. مقایسه عملکرد روش ها در تخمین خصوصیات استاتیک نشان داد که SVR دارای دقت بالاتری نسبت به رگرسیون چند متغیره و ANN می باشد.کلیدواژه ها
خصوصیات استاتیکی و دینامیکی, سنگ های رسی, رگرسیون بردار پشتیبان, شبکه عصبی مصنوعی, آنالیز آماریاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.