Study of Quantitative Structure-Activity Relationship (QSAR) of Diarylaniline Analogues as in Vitro Anti-HIV-۱ Agents in Pharmaceutical Interest

  • سال انتشار: 1402
  • محل انتشار: نشریه متدهای شیمیایی، دوره: 7، شماره: 9
  • کد COI اختصاصی: JR_CHM-7-9_007
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 156
دانلود فایل این مقاله

نویسندگان

Youness Bouakarai

LAC, Laboratory of Applied Chemistry, Faculty ofScience and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco

Fouad Khalil

Equipe Matériaux, Environnement & Modélisation,ESTM, University Moulay Ismail, Meknes, Morocco

Mohammed Bouachrin

LAC, Laboratory of Applied Chemistry, Faculty ofScience and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco

چکیده

A study of quantitative structure-activity relationship (QSAR) is applied to a set of ۲۴ molecules derived from diarylaniline to predict the anti-HIV-۱ biological activity of the test compounds and find a correlation between the different physic-chemical parameters (descriptors) of these compounds and its biological activity, using principal components analysis (PCA), multiple linear regression (MLR), multiple non-linear regression (MNLR) and the artificial neural network (ANN). We accordingly proposed a quantitative model (non-linear and linear QSAR models), and we interpreted the activity of the compounds relying on the multivariate statistical analysis. The topological descriptors were computed with ACD/ChemSketch and ChemBioOffice۱۴.۰ programs. A correlation was found between the experimental activity and those obtained by MLR and MNLR such as (Rtrain = ۰.۸۸۶ ; R۲train = ۰.۷۸۶) and (Rtrain = ۰.۹۲۵ ; R۲train = ۰.۸۵۷) for the training set compounds, and (RMLR-test = ۰.۶) and (RMNLR-test = ۰.۷) for a randomly chosen test set of compounds, this result could be improved with ANN such as (R = ۰.۹۱۶ and R۲ = ۰.۸۴) with an architecture ANN (۶-۱-۱). To evaluate the performance of the neural network and the validity of our choice of descriptors selected by MLR and trained by MNLR and ANN, we used cross-validation method (CV) including (R = ۰.۹۰۳ and R۲ = ۰.۸۱۵) with the procedure leave-one-out (LOO). The results showed that the MLR and MNLR have served to predict activities, but when compared with the results given by a ۶-۱-۱ ANN model. We realized that the predictions fulfilled by the latter model were more effective than the other models. The statistical results indicated that this model is statistically significant and showing a very good stability towards the data variation in leave-one-out (LOO) cross validation.

کلیدواژه ها

HIV-۱ virus, reverse transcriptase (RT), diarylaniline derivatives, QSAR, PCA

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.