Enhancing Lung Cancer Diagnosis Accuracy through Autoencoder-Based Reconstruction of Computed Tomography (CT) Lung Images

  • سال انتشار: 1402
  • محل انتشار: نهمین کنفرانس بین المللی مهندسی صنایع و سیستم­ ها
  • کد COI اختصاصی: ICISE09_102
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 389
دانلود فایل این مقاله

نویسندگان

Mohammad Amin Pirian

Masters Student of Industrial Engineering, Tarbiat Modares University;

Iman Heidari

Masters Student of Industrial Engineering, Tarbiat Modares University;

Toktam Khatibi

Associate Professor at the Faculty of Industrial and Systems Engineering, Tarbiat Modares University;

Mohammad Mehdi Sepehri

Professor at the Faculty of Industrial and Systems Engineering, Tarbiat Modares University;

چکیده

Lung cancer is a major global cause of cancer-related deaths, emphasizing the importance of early detection through chest imaging. Accurate reconstruction of computed tomography (CT) lung images plays a crucial role in the diagnosis and treatment planning of lung cancer patients. However, noise present in CT images poses a significant challenge, hindering the precise interpretation of internal tissue structures. Low-dose CT, with reduced radiation risks compared to conventional-dose CT, has gained popularity. Nonetheless, the noise inherent in these images compromises their quality, potentially impacting diagnostic performance. Denoising autoencoder models, and unsupervised deep learning algorithms, offer a promising solution. By reconstructing clean inputs from corrupted ones, the hidden layers of the autoencoder capture robust features. In this study, a dataset of CT images from patients suspected of lung cancer was categorized into four disease groups, aiming to evaluate and compare different autoencoder models in terms of noise reduction and other evaluation criteria. The results demonstrated that all the designed autoencoder models effectively reduced noise in CT images, improving overall image quality. Notably, semi-supervised autoencoder models exhibited superior performance, preserving fine details and enhancing diagnostic information. This research highlights the potential of autoencoder models in improving the accuracy of lung cancer diagnosis by reconstructing CT lung images, emphasizing the importance of noise reduction techniques in enhancing image quality and diagnostic performance, with the semi-supervised approach showing particular promise in preserving critical details.

کلیدواژه ها

Deep Learning, Autoencoder, Computed tomography images reconstruction, Image quality enhancement

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.