Intelligent and Optimal Control of Air Conditioning ‎Systems by Achieving Comfort and Minimize Energy

  • سال انتشار: 1400
  • محل انتشار: مجله سیستم های دینامیکی کاربردی و کنترل، دوره: 4، شماره: 2
  • کد COI اختصاصی: JR_JADSC-4-2_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 191
دانلود فایل این مقاله

نویسندگان

Yazdan Daneshvar

Department of civil engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran.

Majid Sabzehparvar

Department of industrial engineering collage of engineering, karaj branch, Islamic Azad University, Karaj. Iran.

Seyed Amir Hossein Hashemi

Department of civil engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran.

چکیده

In this study, artificial neural networks, artificial neural network combination with genetic algorithm and neural network combination with Kalman filter were used to optimally model and control a real air conditioning system. Using the above methods, the system is first trained and after verifying the modeling accuracy, the capability of this modeling to predict the future conditions of the system is investigated. In addition to the subsystems investigated in both heating and cooling phases by mass and energy equations in Simulink simulated by Matlab software, the results of this section are finally compared with the optimal modeling results. The most important advantage of artificial neural network modeling over mass and energy equation modeling approaches is that it captures all the uncertainties and nonlinear properties of the air conditioning system due to the use of real data for modeling. It takes. Therefore, this method can optimize energy consumption in air conditioners by predicting the future conditions of the system and by precisely adjusting the time of turning on and off the main energy consuming equipment. The most important achievement of this research is more accurate and realistic modeling of the nonlinear air conditioning system.Comparing the methods used in the research for simulation methods using mass and energy equations, modeling using Bayesian trained neural network, artificial neural network modeling using MLP, modeling using neural network and genetic algorithm, modeling Using neural network and Kalman filter, the square error is equal to ۰.۰۰۶, ۰.۱۸, ۰.۰۵۶, ۰.۱۴۵۶ and more than ۰.۵, respectively.

کلیدواژه ها

HVAC control systems, Artificial Intelligence, Extended Kalman-filter, Genetic Algorithm, artificial ‎neural networks

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.