An Investigation on the QSAR Modeling of Carfilzomib Derivatives Using Monte Carlo Method and Novel Modelling-optimization Approach

  • سال انتشار: 1400
  • محل انتشار: دوفصلنامه تحقیقات شیمی آلی، دوره: 7، شماره: 1
  • کد COI اختصاصی: JR_ORGC-7-1_007
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 183
دانلود فایل این مقاله

نویسندگان

Robabeh Sayyadi Kord Abadi

Department of Chemistry and Chemical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

Omid Alizadeh

Department of Chemistry and Chemical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

Ghasem Ghasemi

Department of Chemistry and Chemical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

چکیده

The activity of the ۲۵ different Carfilzomib derivatives was estimated using multiple linear regression (MLR), artificial neural network (ANN), and genetic algorithm(GA) and simulated annealing algorithm (SA) and Imperialist Competitive Algorithm (ICA) as optimization methods. The obtained results from MLR-MLR, MLR-GA, SA-ANN and GA-ANN techniques were compared and for combinations of modelling-optimization methods observed root mean sum square errors (RMSE) of ۰.۲۹۰, ۰.۰۴۸۲, ۰.۰۲۹۴, ۰.۰۰۹۸ in gas phase, respectively (N=۲۵).A high predictive ability was observed for the MLR-ICA model with the best number of empires/ imperialists (nEmp=۵۰ ) and nEmp=۱۰۰ with root-mean-sum-squared error (RMSE) of ۰.۰۰۹۹۶ in gas phase. From the MLR-ICA method, it was revealed that RDF ۰۷۵m, MATS۱m, F۰۴[N-O], O-۰۵۹, F۰۹[C-O] and Mor۲۱p are the most important descriptors. From Monte Carlo simulations, it was found that the presence of double, absence of halogens, oxygen connected to double bond, sp۲ carbon connected to double bond, double bond with ring, branching, nitrogen are the most important molecular features affecting the biological activity of the drug. It was concluded that simultaneous utilization of MLR-ICA, GA-ANN and Monte Carlo method can lead to a more comprehensive understanding of the relation between physico-chemical, structural or theoretical molecular descriptors of drugs to their biological activities and facilitate designing of new drugs.

کلیدواژه ها

Carfilzomib, Antitumor drugs, QSAR, Genetic Algorithm, Monte Carlo Method

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.