A New Approach for Solving Nonlinear Differential Equations with Poincare Map and Poincare Section

  • سال انتشار: 1395
  • محل انتشار: مجله مهندسی برق مجلسی، دوره: 10، شماره: 3
  • کد COI اختصاصی: JR_MJEE-10-3_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 230
دانلود فایل این مقاله

نویسندگان

Ghasem Sadeghi Bajestani

Imamreza University, Mashhad, Iran

Ali Sheikhani

Amirkabir University, Tehran, Iran

Seyed Mohammad Reza Hashemi Golpayegani

Amirkabir University, Tehran, Iran

Farah Ashrafzadeh

Mashhad University of Medical Sciences, Mashhad, Iran

Paria Hebrani

Mashhad University of Medical Sciences, Mashhad, Iran

چکیده

Solving many of the scientific problems in physics and engineering leads to differential equations, which in many cases no analytical answers can be found. The question to be considered is that if the available numerical methods for solving diferential equations (that are all done by computers) are reliable. Is the Lipschitz validity assumption on differential equations with nonlinear dynamics true? What is the reason for the contradictory outcomes of solving a simple equation using numerical methods? Do the outcomes show the reality of the dynamic system? What is the acceptable replacement for the current methods? All the phenomena of the world have bifurcations, singularity, dissociation, behavioral changes and interaction; and today, science with assumptions like neglecting interactions and singularities, consider the systems as a continues model, although we are in need of a model in which we can solve the problem without inserting the  changes in time approach to zero chain. In this article, accompanied by showing different and contradictory results –which are all wrong– numerical methods for solving a simple differential equation and comparing them with analytical method, we introduce Poincare as a substitution for overcoming this scientific derivation. In this article we solved a differential equation with common numerical methods in MATLAB, and showed that these methods produce conflicting outcomes, and then we solved it using Poincare. After showing the invalidity of common numerical methods and introduction of a simple decomposition method, we investigated Van der Pol  equations using Poincare, and showed the fact that Poincare can simply show the system dynamics like a flashlight.

کلیدواژه ها

en

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.