Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict carbon and inorganic phosphorus recovery in hydrothermal carbonization
- سال انتشار: 1401
- محل انتشار: اولین همایش بین المللی هوش مصنوعی، علم داده و تحول دیجیتال در صنعت نفت و گاز
- کد COI اختصاصی: OILANDGAS01_046
- زبان مقاله: انگلیسی
- تعداد مشاهده: 314
نویسندگان
School of Chemical, Petroleum and Gas Engineering, Iran University Science and Technology, Tehran, Iran | Takhte Jamshid Petrochemical co,
چکیده
Modeling of hydrothermal carbonization (HTC) of poultry litter to high-value materials was conducted in order to understand the process and predict the influence of process parameters on product properties. Artificial neural network (ANN) models used the reaction temperature and time as input datasets and the carbon and inorganic phosphorous recovery as output datasets. Multilayer perceptron (MLP) and radial basis function (RBF) neural networks was used in order to correlate the process parameters to the outputs. At the same time, a Radial-based functions approach with a single hidden layer, was selected as the best ANN. It was evaluated by comparing to five two-layer backpropagation training methods from the Multilayer Perceptron algorithms approach, trainlm, trainbr, trangda, trancgb and trainbfg .Finally, the prediction accuracy of MLP and RBF models are compared using two evaluation metrics: R۲ and MSE. This comparison showed that the RBF model has slightly higher prediction accuracy than the MLP model. The optimum number of neurons in the MLP method’s second hidden layers, as well as the RBF method’s single hidden layer, has been determined to be [۱۰ ۱۰] and ۲۰, respectively. At ۱۷ and ۳۰۰ epochs, the best MSE evaluation efficiency of MLP and RBF networks was estimated to be ۶.۱۵۵۹E-۲۳ and ۲.۷۵۸۹۶E-۳۰, respectively.کلیدواژه ها
Artificial neural network modeling, Multi-layer perceptron, Radial basis function, Hydrothermal carbonization, Hydrocharمقالات مرتبط جدید
- محاسبه تخلخل و نحوه توزیع آن به کمک نمودار تصویرگر FMI
- تفسیر نمودار تصویرگر FMI به منظور شناسایی شکستگیهای دیواره چاه
- ارزیابی تاثیر تکانه قیمتی سوخت های مصرفی بر میزان مصرف
- بررسی تنشهای دیواره چاه و محاسبه فشار منفذی از نمودارهای چاهپیمایی معمول و تصویرگر FMI
- Chelating Agents and their role in enhancing carbonate rock dissolution: A critical Review
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.