A Partial Method for Calculating CNN Networks Based On Loop Tiling

  • سال انتشار: 1401
  • محل انتشار: مجله بین المللی ارتباطات و فناوری اطلاعات، دوره: 15، شماره: 2
  • کد COI اختصاصی: JR_ITRC-15-2_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 219
دانلود فایل این مقاله

نویسندگان

Ali Ali A.D. Farahani

School of Computer Engineering Iran University of Science and Technology Tehran, Iran

Hakem Beitollahi

School of Computer Engineering Iran University of Science and Technology Tehran, Iran

Mahmood Fathy

School of Computer Engineering Iran University of Science and Technology Tehran, Iran

Reza Barangi

School of Computer Engineering Iran University of Science and Technology Tehran, Iran

چکیده

Convolutional Neural Networks (CNNs) have been widely deployed in the fields of artificial intelligence and computer vision. In these applications, the CNN part is the most computationally intensive. When these applications are run in an embedded device, the embedded processor can hardly handle the processing. This paper implements loop tiling to explain how one can construct a lightweight, low-power, and efficient CNN hardware accelerator for embedded computing devices. This method breaks a large CNN engine into small CNN engines and calculates them by low hardware resources. Finally, the results of small CNN engines are added and concatenated to construct the large CNN output. Using this method, a small accelerator can be configured to run a wide range of large CNNs. A small accelerator with one layer is designed to evaluate our methodology. Our initial investigations show that based on our methodology, the constructed accelerator can run a modified version of MobileNetV۱, ۷۰ times per second.

کلیدواژه ها

Convolutional neural networks (CNNs), Hardware Accelerator, Embedded system, Low Power.

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.