Convolutional Neural Network Based Human Activity Recognition using CSI

  • سال انتشار: 1401
  • محل انتشار: مجله بین المللی ارتباطات و فناوری اطلاعات، دوره: 15، شماره: 2
  • کد COI اختصاصی: JR_ITRC-15-2_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 178
دانلود فایل این مقاله

نویسندگان

Hossein Shahverdi

Cognitive Telecommunication Research Group, Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.

Reza Shahbazian

Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, Italy

Parisa Fard Moshiri

CCognitive Telecommunication Research Group, Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.

Reza Asvadi

Cognitive Telecommunication Research Group, Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran

Seyed Ali Ghorashi

Department of Computer Science & Digital Technologies, School of Architecture, Computing, and Engineering, University of East London, London, UK.

چکیده

Human activity recognition (HAR) has the potential to significantly impact applications such as health monitoring, context-aware systems, transportation, robotics, and smart cities. Because of the prevalence of wireless devices, the Wi-Fi-based approach has attracted a lot of attention among other existing methods such as sensor-based and vision-based HAR. Wi-Fi devices can be used to distinguish between daily activities such as "walking," "running," and "sleeping," which affect Wi-Fi signal propagation. This paper proposes a Deep Learning method for HAR tasks that makes use of channel state information (CSI). We convert the CSI data to RGB images and classify the activity recognition using a ۲D-Convolutional Neural Network (CNN). We evaluate the performance of the proposed method on two publicly available datasets for CSI data. Our experiments show that converting data into RGB images improves performance and accuracy compared to our previous method by at least ۵%.

کلیدواژه ها

Activity Recognition, Channel State Information, Convolutional Neural Network, Deep Learning, WiFi.

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.