An Investigation on the Soft Computing Method Performance of the Optimizing Energy Consumption Cost
- سال انتشار: 1402
- محل انتشار: مجله مهندسی برق مجلسی، دوره: 17، شماره: 1
- کد COI اختصاصی: JR_MJEE-17-1_009
- زبان مقاله: انگلیسی
- تعداد مشاهده: 164
نویسندگان
Department of Computer Engineering, Bahçeşehir University, Istanbul, Turkey
Medical Technical College, Al-Farahidi University, Baghdad, Iraq
Al-Nisour University College, Iraq
Medical Instrumentation Techniques Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
National University of Science and Technology, Dhi Qar, Iraq
Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
چکیده
During peak demand hours, hydroelectric energy is one of the most significant sources of energy. Power sector restructuring has increased competition among the country's electricity providers. Estimating the future price of energy is critical for producers in order to enhance investment profit and make better use of resources. One of the most significant technologies of artificial intelligence, Artificial Neural Networks (ANN), has various applications in estimating and forecasting phenomena. Combining artificial intelligence models with optimization models (e.g. Artificial Bee Colonoy [ABC]) has recently become quite popular for improving the performance of artificial intelligence models. The goal of this study is to look at the effectiveness of ANN and ABC-ANN models in forecasting the dispersed and sinusoidal data of Angola's daily peak power price. The findings reveal that in this case study, the employment of the ABC-ANN model is not superior to the ANN model and has not resulted in enhanced performance and forecasting of power market data. As a result, the R۲ of the ANN and ABC-ANN models is ۰.۸۸ and ۰.۸۵, respectively.کلیدواژه ها
Artificial Neural Network, Artificial Bee Colony, Energy Cost, Optimizationاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.