Deep Learning Based Early Intrusion Detection in IIoT using Honeypot

  • سال انتشار: 1402
  • محل انتشار: مجله مهندسی برق مجلسی، دوره: 17، شماره: 2
  • کد COI اختصاصی: JR_MJEE-17-2_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 302
دانلود فایل این مقاله

نویسندگان

Abbasgholi Pashaei

Department of Electrical Engineering, Ahar Branch, Islamic, Azad University, Ahar, Iran

Mohammad Esmaeil Akbari

Department of Electrical Engineering, Ahar Branch, Islamic, Azad University, Ahar, Iran

Mina Zolfy Lighvan

Department of Electrical and Computer Engineering Faculty, Tabriz University, Tabriz, Iran

Asghar Charmin

Department of Electrical Engineering, Ahar Branch, Islamic, Azad University, Ahar, Iran

چکیده

The increasing number of Industrial Internet of Things (IIoT) devices presents hackers with a huge attack surface from which to conduct possibly more destructive assaults. Numerous of these assaults were successful as a consequence of the hackers' inventive and unique approaches. Due to the unpredictability of network technology and attack attempts, traditional Deep Learning (DL) approaches are made ineffective. The accuracy of DL algorithms has been shown across a range of scientific fields. The Convolutional Neural Network Model (CNN) technique is an ideal alternative for anomaly detection and classification since it can automatically classify incoming data and conduct calculations faster. We introduce Honeypot Early Intrusion Detection System (HEIDS) that detects anomalies and classifies intrusions in IIoT networks using DL methods. The model is designed to detect adversaries attempting to attack IIoT Industrial Control Systems (ICS). The suggested model is implemented using One-dimensional convolutional neural networks (CNN ۱D). Due to the importance of industrial services, this system contributes to the enhancement of information security detection in the industrial domain. Finally, this research gives an assessment of the HEIDS datasets of IIoT, utilizing the CNN ۱D technique. With this approach, the prediction accuracy of ۱.۰ was reached.

کلیدواژه ها

Industrial Internet of Things (IIoT), Honeypot Early Intrusion Detection System (HEIDS), IIoT HEIDS, Network Security, Deep Learning (DL), One-dimensional Convolutional Neural Networks (CNN ۱D)

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.