Analysis of COVID-۱۹ Distribution in Countries Using Unsupervised Machine Learning

  • سال انتشار: 1402
  • محل انتشار: دوازدهمین کنفرانس بین المللی فناوری های نوآورانه در زمینه علوم ، مهندسی و تکنولوژی
  • کد COI اختصاصی: TETSCONF12_011
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 306
دانلود فایل این مقاله

نویسندگان

Nastaran Khaksestari

Department of Biomedical Engineering,Tabriz University of Medical Sciences Tabriz, Iran

Reyhaneh Afghan

Department of Biomedical Engineering,Tabriz University of Medical Sciences Tabriz, Iran

Ata Jodeiri

Department of Biomedical Engineering,Tabriz University of Medical Sciences Tabriz, Iran

چکیده

Although more than two years have passed since the spearing of COVID-۱۹, a global pandemic, there are still major peaks in the number of confirmed cases and deaths. Although governments are trying to overcome this disease with different policies, it is not entirely controlled yet. In this study, two methods of unsupervised learning, K-Means and Hierarchical algorithms, were used to cluster ۲۰۷ countries based on social, economic, and health characteristics. Thus, countries with similar factors can take proactive steps to control the pandemic. The optimal number of clusters was considered k=۶ based on the elbow method. To obtain the most associated features, the correlation between selected variables and confirmed COVID-۱۹ cases, deaths, and vaccination rates was analysed. The government stringency index showed a strong correlation with the number of vaccinations, whereas environmental health indicators were weakly correlated with mortality from COVID-۱۹. Politicians can make better decisions by considering these indicators and therefore, manage the negative consequences of COVID-۱۹.

کلیدواژه ها

COVID-۱۹, Clustering methods, Unsupervised learning, K-Means, Hierarchical clustering

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.