A Hybrid Approach to Multimodal Biometric Recognition Based on Feature‑level Fusion of Face, Two Irises, and Both Thumbprints

  • سال انتشار: 1401
  • محل انتشار: مجله سیگنالها و سنسورهای پزشکی، دوره: 12، شماره: 3
  • کد COI اختصاصی: JR_JMSI-12-3_001
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 207
دانلود فایل این مقاله

نویسندگان

Mohammad H Safavipour

Department of Electrical Engineering, Shahed University, Tehran, Iran

Mohammad A Doostari

Department of Computer Engineering, Shahed University, Tehran, Iran

Hamed Sadjedi

Department of Electrical Engineering, Shahed University, Tehran, Iran

چکیده

Background: The most significant motivations for designing multi-biometric systems are high-accuracy recognition, high-security assurances as well as overcoming the limitations like non-universality, noisy sensor data, and large intra-user variations. Therefore, choosing data for fusion is of high significance for the design of a multimodal biometric system. The feature vectors contain richer information than the scores, decisions and even raw data, thereby making feature-level fusion more effective than other levels. Method: In the proposed method, kernel is used for fusion in feature space. First, the face features are extracted using kernel-based methods, the features of both right and left irises are extracted using Hough Transform and Daugman algorithm methods, and the features of both thumb prints are extracted using the Gabor filter bank. Second, after normalization operations, we use kernel methods to map the feature vectors to a kernel Hilbert space where non-linear relations are shown as linear for the purpose of compatibility of feature spaces. Then, dimensionality reduction algorithms are used to the fusion of the feature vectors extracted from fingerprints, irises and the face. since the proposed system uses face, both right ۷and left irises and right and left thumbprints, it is hybrid multi-biometric system. We c۸arried out the tests on seven databases. Results: Our results show that the hybrid multimodal template, while being secure against spoof attacks and making the system robust, can use the dimensionality of only ۱۵ features to increase the accuracy of a hybrid multimodal biometric system to ۱۰۰%, which shows a significant improvement compared with unibiometric and other multimodal systems. Conclusion: The proposed method can be used to search large databases. Consequently, a large database of a secure multimodal template could be correctly differentiated based on the corresponding class of a test sample without any consistency error.

کلیدواژه ها

Feature‑level fusion, hybrid, kernel, multimodal biometric

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.