Thought‑Actuated Wheelchair Navigation with Communication Assistance Using Statistical Cross‑Correlation‑Based Features and Extreme Learning Machine

  • سال انتشار: 1399
  • محل انتشار: مجله سیگنالها و سنسورهای پزشکی، دوره: 10، شماره: 4
  • کد COI اختصاصی: JR_JMSI-10-4_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 202
دانلود فایل این مقاله

نویسندگان

Sathees Kumar Nataraj

Department of Mechatronics Engineering, AMA International University, Salmabad, Bahrain

M.P Paulraj

Department of Computer Science and Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, Tamil Nadu, India

Sazali Bin Yaacob

Electrical, Electronic and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute, Kedah

Abul Hamid Bin Adom

School of Mechatronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia

چکیده

Background: A simple data collection approach based on electroencephalogram (EEG) measurements has been proposed in this study to implement a brain–computer interface, i.e., thought‑controlled wheelchair navigation system with communication assistance. Method: The EEG signals are recorded for seven simple tasks using the designed data acquisition procedure. These seven tasks are conceivably used to control wheelchair movement and interact with others using any odd‑ball paradigm. The proposed system records EEG signals from ۱۰ individuals at eight‑channel locations, during which the individual executes seven different mental tasks. The acquired brainwave patterns have been processed to eliminate noise, including artifacts and powerline noise, and are then partitioned into six different frequency bands. The proposed cross‑correlation procedure then employs the segmented frequency bands from each channel to extract features. The cross‑correlation procedure was used to obtain the coefficients in the frequency domain from consecutive frame samples. Then, the statistical measures (“minimum,” “mean,” “maximum,” and “standard deviation”) were derived from the cross‑correlated signals. Finally, the extracted feature sets were validated through online sequential‑extreme learning machine algorithm. Results and Conclusion: The results of the classification networks were compared with each set of features, and the results indicated that μ (r) feature set based on cross‑correlation signals had the best performance with a recognition rate of ۹۱.۹۳%.

کلیدواژه ها

Brain–computer interface, communication assistance, online sequential‑extreme learning machine, statistical cross correlation-based features, wheelchair navigation system

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.