Extended Robust Boolean Network of Budding Yeast Cell Cycle
- سال انتشار: 1399
- محل انتشار: مجله سیگنالها و سنسورهای پزشکی، دوره: 10، شماره: 2
- کد COI اختصاصی: JR_JMSI-10-2_004
- زبان مقاله: انگلیسی
- تعداد مشاهده: 259
نویسندگان
Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences- Research Center for Biomedical Technologies and Robotics, Tehran University of Medical Sciences - ۳Students’ Scientific Research Center, Tehran University of
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences- Research Center for Biomedical Technologies and Robotics, Tehran University of Medical Sciences
Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences- Research Center for Biomedical Technologies and Robotics, Tehran University of Medical Sciences
چکیده
Background: How to explore the dynamics of transition probabilities between phases of budding yeast cell cycle (BYCC) network based on the dynamics of protein activities that control this network? How to identify the robust structure of protein interactions of BYCC Boolean network (BN)? Budding yeast allows scientists to put experiments into effect in order to discover the intracellular cell cycle regulating structures which are well simulated by mathematical modeling. Methods: We extended an available deterministic BN of proteins responsible for the cell cycle to a Markov chain model containing apoptosis besides G۱, S, G۲, M, and stationary G۱. Using genetic algorithm (GA), we estimated the kinetic parameters of the extended BN model so that the subsequent transition probabilities derived using Markov chain model of cell states as normal cell cycle becomes the maximum while the structure of chemical interactions of extended BN of cell cycle becomes more stable. Results: Using kinetic parameters optimized by GA, the probability of the subsequent transitions between cell cycle phases is maximized. The relative basin size of stationary G۱ increased from ۸۶% to ۹۶.۴۸% while the number of attractors decreased from ۷ in the original model to ۵ in the extended one. Hence, an increase in the robustness of the system has been achieved. Conclusion: The structure of interacting proteins in cell cycle network affects its robustness and probabilities of transitions between different cell cycle phases. Markov chain and BN are good approaches to study the stability and dynamics of the cell cycle network.کلیدواژه ها
Boolean network, budding yeast cell cycle, genetic algorithm, Markov chain modelمقالات مرتبط جدید
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.