BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining
- سال انتشار: 1402
- محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 11، شماره: 2
- کد COI اختصاصی: JR_JADM-11-2_001
- زبان مقاله: انگلیسی
- تعداد مشاهده: 224
نویسندگان
Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
Data Mining Lab, Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
Data Mining Lab, Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
چکیده
Regression testing reduction is an essential phase in software testing. In this step, the redundant and unnecessary cases are eliminated, whereas software accuracy and performance are not degraded. So far, various researches have been proposed in regression testing reduction field. The main challenge in this area is to provide a method that maintain fault-detection capability while reducing test suites. In this paper, a new test suite reduction technique is proposed based on data mining. In this method, in addition to test suite reduction, its fault-detection capability is preserved using both clustering and classification. In this approach, regression test cases are reduced using a bi-criteria data mining-based method in two levels. In each level, the different and useful coverage criteria and clustering algorithms are used to establish a better compromise between test suite size and the ability of reduced test suite fault detection. The results of the proposed method have been compared to the effects of five other methods based on PSTR and PFDL. The experiments show the efficiency of the proposed method in the test suite reduction in maintaining its capability in fault detection.کلیدواژه ها
Test suite reduction, Software, data mining, Coverage criteria, Clusteringاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.