An Unsupervised Anomaly Detection Model for Weighted Heterogeneous Graph
- سال انتشار: 1402
- محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 11، شماره: 2
- کد COI اختصاصی: JR_JADM-11-2_007
- زبان مقاله: انگلیسی
- تعداد مشاهده: 195
نویسندگان
Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.
Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.
چکیده
Nowadays, whereas the use of social networks and computer networks is increasing, the amount of associated complex data with graph structure and their applications, such as classification, clustering, link prediction, and recommender systems, has risen significantly. Because of security problems and societal concerns, anomaly detection is becoming a vital problem in most fields. Applications that use a heterogeneous graph, are confronted with many issues, such as different kinds of neighbors, different feature types, and differences in type and number of links. So, in this research, we employ the HetGNN model with some changes in loss functions and parameters for heterogeneous graph embedding to capture the whole graph features (structure and content) for anomaly detection, then pass it to a VAE to discover anomalous nodes based on reconstruction error. Our experiments on AMiner data set with many base-lines illustrate that our model outperforms state-of-the-arts methods in heterogeneous graphs while considering all types of attributes.کلیدواژه ها
Graph Mining, Graph-based Anomaly Detection, Graph Embedding, Heterogeneous Graph, Graph Neural Networkاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.