Modified Runge–Kutta method with convergence analysis for nonlinear stochastic differential equations with Hölder continuous diffusion coefficient
عنوان مقاله: Modified Runge–Kutta method with convergence analysis for nonlinear stochastic differential equations with Hölder continuous diffusion coefficient
شناسه ملی مقاله: JR_IJNAO-13-2_008
منتشر شده در در سال 1402
شناسه ملی مقاله: JR_IJNAO-13-2_008
منتشر شده در در سال 1402
مشخصات نویسندگان مقاله:
A. Haghighi - Department of Mathematics, Faculty of Science, Razi University, Kermanshah ۶۷۱۴۹, Iran.
خلاصه مقاله:
A. Haghighi - Department of Mathematics, Faculty of Science, Razi University, Kermanshah ۶۷۱۴۹, Iran.
The main goal of this work is to develop and analyze an accurate trun-cated stochastic Runge–Kutta (TSRK۲) method to obtain strong numeri-cal solutions of nonlinear one-dimensional stochastic differential equations (SDEs) with continuous Hölder diffusion coefficients. We will establish the strong L۱-convergence theory to the TSRK۲ method under the local Lipschitz condition plus the one-sided Lipschitz condition for the drift co-efficient and the continuous Hölder condition for the diffusion coefficient at a time T and over a finite time interval [۰, T ], respectively. We show that the new method can achieve the optimal convergence order at a finite time T compared to the classical Euler–Maruyama method. Finally, nu-merical examples are given to support the theoretical results and illustrate the validity of the method.
کلمات کلیدی: Stochastic differential equation, strong convergence, truncated methods, Hölder continuous coefficient
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1685430/