MPCASMA: A Multi-Population Chaotic-based Hybrid Algorithm for Global Optimization and Its Application in Feature Selection

  • سال انتشار: 1402
  • محل انتشار: هفتمین کنفرانس بین المللی پژوهش های کاربردی در علوم و مهندسی
  • کد COI اختصاصی: CARSE07_054
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 437
دانلود فایل این مقاله

نویسندگان

Saeid Barshandeh

Sudabeh Gholizadeh

Department of Computer Science, School of Engineering, Afagh Higher Education Institute, Urmia, Iran

Shima koulaeizadeh

Computer Networks Research Lab, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran

Parinaz Eskandarian

Department of Computer Science, School of Engineering, Afagh Higher Education Institute, Urmia, Iran

Sasan Garah Pasha

Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

Akbar Ghaffarpour Rahbar

Computer Networks Research Lab, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran

چکیده

Contemporary, a significant volume of data is being produced, which has caused various problems comprising an exponential increase in data processing time, decreased accuracy of existing techniques, and increased demand for required hardware resources for data processing tools and methods. Feature selection deals with the problems by selecting the optimal subset of related features. Scholars proposed various methods for feature selection, the most recent of which is the use of meta-heuristic algorithms. Considering that new and voluminous datasets are being developed, this field is still one of the hot research fields. In this paper, an innovative optimization algorithm called MPCASMA is presented. In MPCASMA, Arithmetic Optimization Algorithm (AOA) and Slime Mold Algorithm (SMA) are hybridized through a multi-population strategy. The Sine, Leibovitch and Circle chaotic maps are adopted in the following, and a novel hybrid chaotic map is provided. Additionally, an advanced neighborhood search strategy is presented. Then, six different S-shape, U-shape, and V-shape transition functions are employed to obtain the most optimal binary variant of MPCASMA. Ultimately, twenty-three unimodal, multimodal, and fixed dimensions standard benchmark functions and eight real-world datasets are utilized to check the efficiency of the contributions and the superiority of the proposed method. The proposed algorithm is compared with the AEO, AOA, DO, EO, MRFO, SMA and TSA algorithms numerically and visually in the experiments. The results indicate the proposed algorithm's effectiveness and superiority over competitors.

کلیدواژه ها

Arithmetic Optimization Algorithm, Slime Mold Algorithm, Numerical Optimization, Feature Selection, K-Nearest Neighbor

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.