قدرت شبکه عصبی پیچشی در پیش بینی درماندگی مالی
- سال انتشار: 1402
- محل انتشار: فصلنامه راهبرد مدیریت مالی، دوره: 11، شماره: 2
- کد COI اختصاصی: JR_JFMZ-11-2_004
- زبان مقاله: فارسی
- تعداد مشاهده: 252
نویسندگان
دانشجوی دانشگاه ارشاد دماوند-واحد تهران
استادیار گروه حسابداری، دانشکده علوم اجتماعی و اقتصادی، دانشگاه الزهرا
چکیده
در این پژوهش ضمن نگاه بر سیر تکامل ادبیات پیش بینی درماندگی مالی، به ارائه یک مدل یادگیری عمیق پرداخته شده است. در این روش به شکلی مراحلی که روش های پیشین برای پیش بینی درماندگی طی کرده اند، کوتاه تر و خودکارتر شده است. در نهایت، به مقایسه دقت پیش بینی مدل توسعه داده شده با مدل های پیشین در این حوزه پرداخته شده است. در این پژوهش یک شبکه عصبی پیچشی به عنوان یک مدل یادگیری عمیق که داده های ۱۴ متغیر مرتبط با پیش بینی درماندگی مالی را در طول ۳ سال متوالی واکاوی می کند، برای پیش بینی درماندگی مالی مورداستفاده قرار گرفته است.بدر این راستا، به منظور جلوگیری از خطاهای احتمالی تعمیم پذیری، از روش K-fold برای نمونه گیری فرعی استفاده شده است که داده های ۳۰۰ نمونه را مورد بررسی قرار می دهد. در نهایت، با استفاده از آزمون ناپارامتریک Wilcoxon به بررسی معنی دار بودن اختلاف دقت پیش بینی ارائه شده میان مدل توسعه داده شده و مدل های پیشین پرداخته شده است. نتایج این پژوهش نشان می دهد مدل شبکه عصبی پیچشی به شکل معنی داری در سطح اطمینان ۹۵ درصد مدل های پیش بینی درماندگی سابق از جمله رگرسیون لجستیک و ماشین بردار پشتیبان را در دقت پیش بینی شکست می دهد.کلیدواژه ها
درماندگی مالی, پیشبینی, شبکه عصبی پیچشی, یادگیری عمیقاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.