An in-silico study to find potential effective circRNAs in the progression of Huntington’s disease

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 107

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJBMS-26-8_011

تاریخ نمایه سازی: 3 تیر 1402

چکیده مقاله:

Objective(s): Huntington’s disease (HD) is identified as a progressive genetic disorder caused by a mutation in the Huntington gene. Although the pathogenesis of this disease has not been fully understood, investigations have demonstrated the role of various genes and non-coding RNAs in the disease progression. In this study, we aimed to discover the potential promising circRNAs which can bind to miRNAs of HD. Materials and Methods: We used several bioinformatics tools such as ENCORI, Cytoscape, circBase, Knime, and Enrichr to collect possible circRNAs and then evaluate their connections with target miRNAs to reach this goal. We also found the probable relationship between parental genes of these circRNAs and the disease progress. Results: According to the data collected, more than ۳۷۰ thousand circRNA-miRNA interactions were found for ۵۷ target miRNAs. Several of circRNAs were spliced out of parental genes involved in the etiology of HD. Some of them need to be further investigated to elucidate their role in this neurodegenerative disease.Conclusion: This in silico investigation highlights the potential role of circRNAs in the progression of HD and opens up new horizons for drug discovery as well as diagnostic approaches for the disease.

نویسندگان

Anahita Moradi

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Farbod Shahabinezhad

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Ali Dehshahri

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Nørremølle A, Budtz-Jørgensen E, Fenger K, Nielsen J, Sørensen S, ...
  • Patil K, Joseph S, Shah J, Mukherjee S. An integrated ...
  • نمایش کامل مراجع