Enhancing Seismic Design of Non-structural Components Implementing Artificial Intelligence Approach: Predicting Component Dynamic Amplification Factors

  • سال انتشار: 1402
  • محل انتشار: ماهنامه بین المللی مهندسی، دوره: 36، شماره: 7
  • کد COI اختصاصی: JR_IJE-36-7_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 229
دانلود فایل این مقاله

نویسندگان

B. D. Bhavani

Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India

S. P. Challagulla

Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India

E. Noroozinejad Farsangi

Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran

I. Hossain

School of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia

M. Manne

Department of Civil Engineering, Birla Institute of Technology and Science -Pilani, Hyderabad Campus, Telangana, India

چکیده

The seismic performance of non-structural components (NSCs) has been the focus of intensive study during the last few decades. Modern building codes define design forces on components using too simple relationships. The component accelerates faster than the floor acceleration to which it is connected. Therefore, component dynamic amplification factors (CDAFs) are calculated in this work to quantify the amplification in the acceleration of NSCs for the various damping ratios and tuning ratios of the NSC, and the primary structural periods. From the analysis results, it was observed that CDAF peaks are either underestimated or overestimated by the code-based formulae. A prediction model to ascertain the CDAFs was also developed using artificial neural networks (ANNs). Following that, the suggested model is contrasted with the established relationships from the past research. The ANN model's coefficient of correlation ( ) was ۰.۹۷. Hence, using an ANN algorithm reduces the necessity of laborious and complex analysis.

کلیدواژه ها

primary structure, Secondary structure, Dynamic interaction, Tuning ratio

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.