A new copula-based bivariate Gompertz--Makeham model and its application to COVID-۱۹ mortality data

  • سال انتشار: 1402
  • محل انتشار: مجله سیستم های فازی، دوره: 20، شماره: 3
  • کد COI اختصاصی: JR_IJFS-20-3_011
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 217
دانلود فایل این مقاله

نویسندگان

M. Esfahani

Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Iran

M. Amini

Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Iran

G. R. Mohtashami-Borzadaran

Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Iran

A. Dolati

Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Iran

چکیده

One of the useful distributions in modeling mortality (or failure) data is the univariate Gompertz--Makeham distribution. To examine the relationship between the two variables, the extended bivariate Gompertz--Makeham distribution is introduced, and its properties are provided. Also, some reliability indices, including aging intensity and stress-strength reliability, are calculated for the proposed model. Here, a new copula function is constructed based on the extended bivariate Gompertz--Makeham  distribution. Some of its features including dependency properties, such as dependence structure, some  measures of dependence, and tail dependence,  are studied.The estimation of the  parameters of new copula is presented, and at the end, a simulation study and a performance analysis based on the real data are presented.  So, by analyzing the mortality data due to COVID-۱۹, the appropriateness of the proposed model is examined.

کلیدواژه ها

Copula function, bivariate Gompertz--Makeham distribution, dependence measures, dependence structure, reliability

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.