Size and topology optimization of trusses using hybrid genetic-particle swarm algorithms
- سال انتشار: 1391
- محل انتشار: نهمین کنگره بین الملی مهندسی عمران
- کد COI اختصاصی: ICCE09_917
- زبان مقاله: انگلیسی
- تعداد مشاهده: 1104
نویسندگان
Msc student of Civil Engineering, Shiraz University
Professor of Civil Engineering, Shiraz University
چکیده
Optimal design of truss structures is an active branch of research in optimization. Three main classes of truss optimization include size, geometry and topology. Extensive research in a range of different types of optimizing methods have been done. Nowadays many of optimization algorithms are inspired by natural phenomena such as genetic algorithm, particle swarm and ants colonies. These, so-called metaheuristic algorithms, produce random initial solutions and improve their efficiency during the process of optimizing, and search for global optimum. In order to overcome the disadvantages of genetic algorithm (high computational cost of the slow convergence rate in solving engineering optimization problems) and particle swarm algorithm (falling into local optimum and premature convergence), these two algorithms are combined to reach better solutions and increased stability. In hybrid algorithms, the main advantages of using the particle swarm optimization include directing the agents toward the global best (obtained by the swarm) and the local best (obtained by the agent itself) so that the genetic algorithm is improved in performance. In this paper, size and topology of trusses are optimized using hybrid genetic-particle swarm (HGAPSO) algorithms. To optimize truss weight, complex design variables, cross section of members and node connectivity, are selected as discrete design variables, so that desired constraints such as stress and displacement restrictions and buckling of members are satisfied. Finally, some design examples are tested using the new method compared to other heuristic algorithms to demonstrate the effectiveness of the present workکلیدواژه ها
size/topology optimization, trusses, genetic algorithm, particle swarm algorithm, hybrid algorithmمقالات مرتبط جدید
- Properties and characteristics of graphene in the construction industry
- بررسی ارتباط بین گرایش های رشته مهندسی عمران و مهندسی محیط زیست
- Evaluating the ۲۰-Minute City Concept using Linked Open Data- Case Study: Mashhad Metrpolitan
- بررسی چالش ها و فرصت های اقتصاد چرخشی در حوزه آب و فاضلاب
- Principles of Sustainable Architectural Design in Environmental Conservation
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.