A Search for Novel Antidiabetic Agents Using Ligand-Based Drug Design and Molecular Docking Studies Employing Human Intestinal Maltase-Glucoamylase as Model Enzyme

  • سال انتشار: 1402
  • محل انتشار: نشریه پیشرفته شیمی، دوره: 6، شماره: 2
  • کد COI اختصاصی: JR_AJCS-6-2_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 233
دانلود فایل این مقاله

نویسندگان

Khalifa Aminu

Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

Adamu Uzairu

Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

Stephen Abechi

Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

Gideon Adamu

Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

Abdullahi Umar

Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

چکیده

This study employed quantitative structure-activity relationship (QSAR) to predict the inhibitory activities of N-(alkyl/aryl)-۲-chloro-۴-nitro-۵-[(۴-nitrophenyl) sulfamoyl] benzamide derivatives as potent inhibitors of C-terminal human intestinal maltase-glucoamylase (MGAM-C). Density Functional Theory with B۳LYP/۶-۳۱G* as the basis set was used to optimize the chemical structures of the derivatives. Genetic function approximation generated three models, with model one having validation keys of R۲int= ۰.۹۸۹, R۲adj = ۰.۹۸۴, Q۲cv = ۰.۹۷۴, and LOF = ۰.۰۰۵۶ being selected as the best due to it highest external validation parameter of R۲ext = ۰.۷۲۲. The ligand-based approach designed four compounds with higher activities than the lead compound. The binding interactions of the designed compounds within the active site of (MGAM-C) revealed interesting MolDock scores. This research concluded that the designed compounds from the derivatives could serve as potent inhibitors of MGAM-C, offering valuable insight into developing novel medications to treat diabetes mellitus.

کلیدواژه ها

Quantitative structure activity relationship, Antidiabetic agents, Molecular docking, Molegro virtual docker, Density functional theory

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.