CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

رویکرد نروفازی جهت کاهش فضای سازگاری سیستم های خود تطبیق

عنوان مقاله: رویکرد نروفازی جهت کاهش فضای سازگاری سیستم های خود تطبیق
شناسه ملی مقاله: CECCONF18_025
منتشر شده در هجدهمین کنفرانس ملی علوم و مهندسی کامپیوتر و فناوری اطلاعات در سال 1401
مشخصات نویسندگان مقاله:

کاظم نیک فرجام - عضو هیات علمی دانشگاه آزاد اسلامی- واحد بیرجند

خلاصه مقاله:
یکی از چالش های بسیار بزرگ در حیطه موضوع سیستم های خود تطبیق کاوش پایگاه دانش، استخراجاطلاعات و دانش مورد نیاز از پایگاه دانش و سپس اخذ تصمیم می باشد. در حالت عادی پایگاه دانش در سیستم خود تطبیق، محیطیبسیار حجیم است که استخراج اطلاعات از آن بسیار زمانبر و دشوار میباشد. در حالی که درسیستم های خود تطبیق نیاز به داشتن سرعت عمل در اخذ و اجرای تصمیمات توسط سیستم، است.این مقاله سعی در ارائه تلفیق یادگیری ماشین با سیستم های خودتطبیق جهت تولید و طراحی مکانیزمی برایپادگیری شرایط سیستم و سپس پیشنهاد گزینه مناسب به سیستم است. در این راستاء به دلیل کیفی بودن محیط وشرایط محیط، استفاده از منطق فازی می تواند منجر به ارتقای تصمیم گیری و مواجهه با حالت های مختلف محیطگردد. در این مقاله اقدام به استفاده از شبکه نروفازیء به منظور یادگیری فضای سازگاری و کاهش گزینه های سازگاریدر زمان اخذ تصمیم و در نتیجه کوتاه تر شدن زمان تصمیم داریم.این روش با روش معمول در سیستم خود تطبیق و همچنین با شبکه عصبی مصنوعی بدون منطق فازی،مقایسه گردید که بر طبق نتایج و آزمایشات انجام شده، رویکرد پیشنهادی سرعت اخذ تصمیم را افزایش داده، تاخیر ونرخ از دست دادن بسته ها را کاهش و در مصرف انرژی شبکه صرفه جویی کند.

کلمات کلیدی:
سیستم خودتطبیق، شبکه نروفازی، فضای سازگاری، فازی سازی

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1623317/