پیش بینی کوتاه مدت و بلندمدت بار الکتریکی با استفاده از روشهای جدید یادگیری ماشین با در نظر گرفتن دما و زاویه ارتفاعی خورشید
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 85
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIAE-20-2_010
تاریخ نمایه سازی: 14 اسفند 1401
چکیده مقاله:
هدف از این مقاله، به کارگیری و مقایسه عملکرد سه روش یادگیری ماشین شامل جنگل تصادفی (RF)، ماشین بردار پشتیبان (SVM) و اسپلاینهای رگرسیون تطبیقی چندمتغیره (MARS) برای پیش بینی کوتاه مدت و بلندمدت بار الکتریکی است. اطلاعات ورودی به صورت بار الکتریکی ساعت قبلی، دمای هوا و زاویه فعلی ارتفاعی خورشید و روزهای تعطیل رسمی در نظر گرفته شده است. سه معیار مختلف برای مقایسه عملکرد شامل خطای جذر میانگین مربعات، خطای میانگین قدر مطلق و ضریب تعیین R۲ مورد استفاده قرار گرفته است. روش ها بر روی داده های ثبت شده واقعی مصرف بار الکتریکی یکی از پست های فوق توزیع شهر همدان و با استفاده از زبان برنامه نویسی متن باز R پیاده سازی شده است. داده دمای هوای منطقه از نزدیک ترین ایستگاه هواشناسی دریافت شده و زاویه تابش خورشید برای کل ساعات سال بر اساس موقعیت جغرافیای محل و روابط نجومی محاسبه شده است. نتایج نشان می دهد که روشهای پیاده شده با دقت بسیار خوبی بار مصرفی را پیش بینی مینمایند و همچنین روش RF در پیش بینی بار کوتاه مدت و روش SVM در پیش بینی بار بلندمدت عملکرد بسیار مناسبی ارائه میدهند و دقت بیشتری دارند.
کلیدواژه ها:
Short-Term Prediction ، Long-Term Prediction ، Machine Learning ، Random Forest ، Support Vector Machine ، Multivariate Adaptively Regression Spline ، پیش بینی بار کوتاه مدت ، پیش بینی بار بلندمدت ، یادگیری ماشین ، جنگل تصادفی ، ماشین بردار پشتیبان ، اسپلاین های رگرسیون تطبیقی چند متغیره
نویسندگان
رمضانعلی نقی زاده
Hamedan University of Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :