An Enhanced Hybrid Method based on Local and Frequency Feature Extraction for Image Copy Move Forgery Detection
- سال انتشار: 1400
- محل انتشار: مجله مهندسی برق مجلسی، دوره: 15، شماره: 3
- کد COI اختصاصی: JR_MJEE-15-3_007
- زبان مقاله: انگلیسی
- تعداد مشاهده: 232
نویسندگان
Department of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Department of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده
Today, due to the advent of the powerful photo editing software packages, it has become relatively easy to create forgery images. Recognizing the correctness of digital images becomes important when those images are used as evidence in legal, forensic, industrial, and military applications. One of the most common ways to forge images is copy move forgery, in which one part of the image is copied and pasted in another part of the same image. So far, various methods have been proposed for detecting copy move forgery, but these methods are not able to detect copy move forgery with different challenges of noise, rotation, scale, and detection of symmetrical images with high accuracy. In this paper, an enhanced hybrid method based on local and frequency feature extraction is presented for image copy move forgery detection, which has a very high resistance to above challenges, both individually and simultaneously and has provided good identification accuracy. In this method, the combination of Discrete Wavelet Transform, Scale Invariant Feature Transform and Local Binary Pattern are used simultaneously. The forged area is chosen in such a way that at least both methods used in this proposed method have consensus about the forgery of that area. Various experiments and analyses on the MICC database show that the proposed methods, despite the above challenges, have reached the accuracy of ۹۸.۸۱% both separately and simultaneously, which shows significant improvement compared to other methods used in this field.کلیدواژه ها
Copy Move Forgery Detection, Scale Invariant Feature Transform, Discrete Wavelet transform, , Local Binary Pattern, Symmetrical Imagesاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.