A Review on Machine Learning and Computer Vision Based Approaches in STEM branch

  • سال انتشار: 1401
  • محل انتشار: اولین کنگره بین المللی علوم، مهندسی و فن آوری های نو
  • کد COI اختصاصی: SECONGRESS01_013
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 329
دانلود فایل این مقاله

نویسندگان

Iman Bagheri

Independent Researcher, Mashhad, Iran

Ali Ahmadi

Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

Somia Molaei

Department of Software Engineering, Iran University of Industries & Mines

Seyyed Mostafa RezaieIndependent Researcher Mashhad Iran

seyyedmostafarezaie@gmail.com

Amirhossein Amadeh

Independent Researcher, Mashhad, Iran

چکیده

Machine Learning (ML) and image processing (IP) are both emphasized in this research study, which also discusses the procedures involved in creating digital images and how challenging it is to feed a computer system with them. The first IP stage for this process is acquisition, during which a picture can be loaded and set up for subsequent processing (more on that in the image processing section. One machine learning (ML) approach called neural networks (NN) seeks to improve the answers to the given problem by using input values to predict the output. Well-known companies use NN for maintenance of entire applications, including Facebook for facial detection and recognition, Google for Gmail spam filter, and Microsoft for translation. We have also covered the idea of deep learning, a new development in the field of artificial intelligence (AI), a subfield of machine learning (ML). Since the development of this technology, researchers' attention has been drawn to it. We come to a conclusion that although machine learning has effectively penetrated every aspect of computer vision and performs admirably in each one, there are still a few unexplored areas that require further study.

کلیدواژه ها

image processing, computer vision, machine learning, programming, neural networks

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.