A Solution Towards to Detract Cold Start in Recommender Systems Dealing with Singular Value Decomposition

  • سال انتشار: 1400
  • محل انتشار: مجله بین المللی مدل سازی و محاسبات ریاضی، دوره: 11، شماره: 3
  • کد COI اختصاصی: JR_IJMAC-11-3_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 343
دانلود فایل این مقاله

نویسندگان

Keyvan Vahidy Rodpysh

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran,Iran

Seyed Javad Mirabedini

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Touraj Banirostam

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

چکیده

Recommender system based on collaborative filtering (CF) suffers from two basic problems known as cold start and sparse data. Appling metric similarity criteria through matrix factorization is one of the ways to reduce challenge of cold start. However, matrix factorization extract characteristics of user vectors & items, to reduce accuracy of recommendations. Therefore, SSVD two-level matrix design was designed to refine features of users and items through NHUSM similarity criteria, which used PSS and URP similarity criteria to increase accuracy to enhance the final recommendations to users. In addition to compare with common recommendation methods, SSVD is evaluated on two real data sets, IMDB &STS. Experimental results depict that proposed SSVD algorithm performs better than traditional methods of User-CF, Items-CF, and SVD recommendation in terms of precision, recall, F۱-measure. Our detection emphasizes and accentuate the importance of cold start in recommender system and provide with insights on proposed solutions and limitations, which contributes to the development.

کلیدواژه ها

Recommender Systems, singular value decomposition, Cold start, SSVD, similarity measure

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.