Advanced Refinements of Numerical Radius Inequalities

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 212

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMAC-11-4_001

تاریخ نمایه سازی: 27 دی 1401

چکیده مقاله:

By taking into account that the computation of the numerical radius is an optimization problem, we prove, in this paper, several refinements of the numerical radius inequalities for Hilbert space operators. It is shown, among other inequalities, that if A is a bounded linear operator on a complex Hilbert space, thenω(A)≤½√(|| |A|۲+|A*|۲||+|| |A| |A*|+|A*| |A| ||),where ω(A), ||A||, and |A| are the numerical radius, the usual operator norm, and the absolute value of A, respectively. This inequality provides a refinement of an earlier numerical radius inequality due to Kittaneh, namely,ω(A)≤½(||A||+||A۲||)½.Some related inequalities are also discussed.

نویسندگان

Farzaneh Pouladi Najafabadi

Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Hamid Moradi

Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran