Advanced Refinements of Numerical Radius Inequalities
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 212
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMAC-11-4_001
تاریخ نمایه سازی: 27 دی 1401
چکیده مقاله:
By taking into account that the computation of the numerical radius is an optimization problem, we prove, in this paper, several refinements of the numerical radius inequalities for Hilbert space operators. It is shown, among other inequalities, that if A is a bounded linear operator on a complex Hilbert space, thenω(A)≤½√(|| |A|۲+|A*|۲||+|| |A| |A*|+|A*| |A| ||),where ω(A), ||A||, and |A| are the numerical radius, the usual operator norm, and the absolute value of A, respectively. This inequality provides a refinement of an earlier numerical radius inequality due to Kittaneh, namely,ω(A)≤½(||A||+||A۲||)½.Some related inequalities are also discussed.
کلیدواژه ها:
نویسندگان
Farzaneh Pouladi Najafabadi
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Hamid Moradi
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran