مقایسه مدل های شبکه عصبی مصنوعی و رگرسیون چند متغیره در تخمین تغییرات کیفی آب زیرزمینی (مطالعه موردی: آبخوان کاشان)

  • سال انتشار: 1394
  • محل انتشار: فصلنامه دانش آب و خاک، دوره: 25، شماره: 2
  • کد COI اختصاصی: JR_WASO-25-2_017
  • زبان مقاله: فارسی
  • تعداد مشاهده: 227
دانلود فایل این مقاله

نویسندگان

محمد میرزاوند

۱- دانشجوی دکترای علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان

هدی قاسمیه

۲- استادیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان

سید جواد ساداتی نژاد

۳- دانشیار گروه انرژی های نو و محیط زیست، دانشکده علوم و فنون نوین، دانشگاه تهران

محمود اکبری

۴- استادیار گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کاشان

چکیده

مجاورت آبخوان کاشان با جبهه­ آب شور دریاچه­ نمک، باعث ایجاد شیب هیدرولیکی و درنتیجه پیشروی آب شور به داخل آبخوان شده است. در این پژوهش با توجه به وضعیت موجود، شبیه­سازی کیفی آب زیرزمینی دشت کاشان با استفاده از مدل­های شبکه عصبی مصنوعی (شامل پرسپترون چندلایه و تابع شعاعی) و رگرسیون چند متغیره انجام شد. برای این منظور ابتدا اقدام به تعیین تیپ غالب آب منطقه شد و سپس اقدام به مدل­سازی شد. نتایج حاصل از بررسی تیپ آب نشان داد که کلرور- سدیم، تیپ غالب آب منطقه است. بنابراین در مدل­سازی­ها، علاوه بر تغییرات سطح ایستابی و بارندگی، مقدار غلظت کلرور در سال قبل نیز به­عنوان ورودی مدل انتخاب گردیده و خروجی مدل نیز، مقدار کلرور در سال جاری بوده است. نتایج نشان داد که مدل پرسپترون چندلایه نسبت به مدل­های تابع شعاعی و رگرسیون چند متغیره دارای نتیجه­ بهتری در پیش­بینی غلظت کلر در ۱۱ سال آینده بوده است. به طوری که ضریب تبیین اصلاح شده­ حاصله، به­ترتیب برابر ۹۷/۰، ۸۹/۰ و ۳۴/۰ بودند. همچنین تابع محرک تانژانت هایپربولیک خطی و الگوریتم مومنتوم، نتایج بهتری را نسبت به توابع و الگوریتم­های دیگر نشان دادند. نتایج حاصل از تحلیل حساسیت مدل نشان داد که غلظت کلر در سال قبل و تغییرات سطح ایستابی، مهم­ترین تاثیر را در شبیه­سازی غلظت کلر داشته است.

کلیدواژه ها

آبخوان کاشان, رگرسیون چند متغیره, شبکه عصبی مصنوعی, کلرور- سدیم, کیفیت آب زیرزمینی

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.