Survival of Dialysis Patients Using Random Survival Forest Model in Low-Dimensional Data with Few-Events

  • سال انتشار: 1398
  • محل انتشار: مجله دانشگاه علوم پزشکی کرمان، دوره: 26، شماره: 6
  • کد COI اختصاصی: JR_JKMU-26-6_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 275
دانلود فایل این مقاله

نویسندگان

Shideh Rafati

Student in Biostatistics, Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran

Mohammad Reza Baneshi

Professor of Biostatistics, Physiology Research Center, Institute of Basic and Clinical Physiology Sciences & Modeling in Health Research Center, Faculty of Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences,

Laleh Hassani

Assistant Professor of Health Education and Health Promotion, Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

Abbas Bahrampour

Professor of Biostatistics, Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

چکیده

Background:Dialysis is a process for eliminating extra uremic fluids of patients with chronic renal failure. The present study aimed to determine the variables that influence the survival of dialysis patients using random survival forest model (RSFM) in low-dimensional data with low events per variable (EPV). Methods:In this historical cohort study, information was collected from ۲۵۲ dialysis patients in Bandar Abbas hospitals, Iran. The survival time of the patients was calculated in years from the onset of dialysis to death or until the end of the study in ۲۰۱۶. RSFM was used as the number of events per variable (EPV) was low. The data collected from ۲۵۲ patients were randomly divided into training and testing sets, and this process was repeated ۱۰۰ times. C-index and Brier Score (BS) were used to assess the performance of the model in the test set.  Results: In this study, ۳۵ (۱۳.۹%) mortality cases were observed. Based on the findings, the mean C-index value in training and testing sets was ۰.۶۴۰ and ۰.۶۸۷, and the mean BS value in training and testing sets was ۰.۰۱۷ and ۰.۰۲۳, respectively. The results of the RSFM revealed that BMI, education, occupation, dialysis duration, number of dialysis sessions and age at dialysis onset were the most important factors. Conclusion: RSFM can be used to determine the survival of dialysis patients and manage low-dimensional data with few-events if the researcher desires to select a nonparametric model.

کلیدواژه ها

End Stage Renal Disease, Dialysis, Random Survival Forest Model, Events per Variable

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.