Speech Emotion Recognition using Enriched Spectrogram and Deep Convolutional Neural Network Transfer Learning

  • سال انتشار: 1401
  • محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 10، شماره: 4
  • کد COI اختصاصی: JR_JADM-10-4_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 387
دانلود فایل این مقاله

نویسندگان

B. Z. Mansouri

Electrical and Computer Engineering Department, Ferdows branch, Islamic Azad University, Ferdows, Iran.

H.R. Ghaffary

Electrical and Computer Engineering Department, Ferdows branch, Islamic Azad University, Ferdows, Iran.

A. Harimi

Electrical and Computer Engineering Department, Ferdows branch, Islamic Azad University, Ferdows, Iran.

چکیده

Speech emotion recognition (SER) is a challenging field of research that has attracted attention during the last two decades. Feature extraction has been reported as the most challenging issue in SER systems. Deep neural networks could partially solve this problem in some other applications. In order to address this problem, we proposed a novel enriched spectrogram calculated based on the fusion of wide-band and narrow-band spectrograms. The proposed spectrogram benefited from both high temporal and spectral resolution. Then we applied the resultant spectrogram images to the pre-trained deep convolutional neural network, ResNet۱۵۲. Instead of the last layer of ResNet۱۵۲, we added five additional layers to adopt the model to the present task. All the experiments performed on the popular EmoDB dataset are based on leaving one speaker out of a technique that guarantees the speaker's independency from the model. The model gains an accuracy rate of ۸۸.۹۷% which shows the efficiency of the proposed approach in contrast to other state-of-the-art methods.

کلیدواژه ها

Wideband and narrowband spectrogram, ResNet۱۵۲, DCNN, Transfer learning, Speech emotion recognition

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.