A simulation–based multi-objective optimization of building energy efficiency

  • سال انتشار: 1400
  • محل انتشار: اولین کنفرانس بین المللی پژوهش ها و دستاوردهای نو در علوم، مهندسی و فناوری های نوین
  • کد COI اختصاصی: SETCONG01_060
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 304
دانلود فایل این مقاله

نویسندگان

Fatemeh Hakimzadeh

Islamic Azad University of Dashtestan, Borazjan, Iran,

Nasser Jomhourian Azad

Islamic Azad University of Dashtestan, Borazjan, Iran

Rasoul Razmi

Islamic Azad University of Dashtestan, Borazjan, Iran

چکیده

Iran is one of the largest energy consuming countries in the world. In Iran, buildings account for a significant proportion of the total energy consumption and carbon dioxide emission in which the energy used for the annual cooling, heating and lighting comprises up to ۴۰%. This paper proposes a new approach for the simulation–based multi-criteria optimization problems, which overcomes important limitations of the optimization of the building energy performance. In this research, the multi-objective genetic algorithm (NSGA-II) method is coupled with EnergyPlus building energy simulation software to find optimum design parameters to increase the building energy productivity. To assess the capability and effectiveness of the proposed approach, the developed method is applied to a single room model, and the effect of building architectural parameters such as the building orientation, the shading overhang depth, the window size and the glazing material properties on the building energy consumption are studied in four major climate regions of Iran. In the result section, mono-criterion and multi-criteria optimization analyses of the annual cooling, heating, and lighting electricity consumption are studied to understand the interactions between the objectives and to minimize the total annual building energy demand. The results of the multi-objective optimization indicate that the annual heating electricity consumption may be increased ۱.۱ to ۷.۱%, however the annual cooling and lighting ones decreases ۱۵ to ۲۲% and ۰ to ۱.۱%, respectively, in comparison with the baseline model. The optimum design leads to ۱.۸ to ۹.۲% decrease of the total annual building electricity demand for four different climate regions of Iran.

کلیدواژه ها

Building energy performance, EnergyPlus, Weighted sum method, Multi-objective optimization, Genetic algorithm (GA)

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.