Predicting the Behaviour of the Senescence-Accelerated Mouse (SAM) Strains (SAMPs and SAMR) Using Machine Learning Algorithm

  • سال انتشار: 1399
  • محل انتشار: مجله آنالیز غیر خطی و کاربردها، دوره: 11، شماره: 0
  • کد COI اختصاصی: JR_IJNAA-11-0_032
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 125
دانلود فایل این مقاله

نویسندگان

- -

Software Department, College of Information Technology, University of Babylon, Iraq

چکیده

A primary aspect of human aging is progressive neurological dysfunction. Due to the fundamental variations in aging in mice and humans, it is difficult to obtain and research effective mouse models. There are two types of tissue phenotypes that are distinct; one is the tissue for retina and one for the hippocampus. Each form has three strains. A variational formulation for sparse approximations is introduced in this work, inferring both the kernel hyper-parameters and inducing inputs by maximising a lower bound of probability of true log marginal. In order to account for more complexity with the time series, a model is built on this series with a correlated human model performance. The molecular senescence of the hippocampus and retina, both with accelerated neurological senescence (SAMP۱۰ and SAMP۸) models were presented. The purpose of the study is to specify the relationship between these genes or pathways that would provide insight into the mechanism for this phenotype which will be superior to the current incomplete state-of-the-art approximations. Furthermore, the combined study of the essential features of inbred strains and profiling of gene expression can help determine which genes are essential for complex phenotypes. However, the identification, sequencing and gene expression of full-genome polymorphism of inbred mouse strains with intermediate.

کلیدواژه ها

Sparse Gaussian Process (Classification and Regression), Puma Package, Coregionalisation Model, Senescence-Accelerated Mice strains

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.