Strong convergence theorems for minimization, variational inequality and fixed point problems for quasi-nonexpansive mappings using modified proximal point algorithms in real Hilbert spaces
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 211
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-12-2_042
تاریخ نمایه سازی: 11 آذر 1401
چکیده مقاله:
In this paper, we investigate the problem of finding a common element of the solution set of convex minimization problem, the solution set of variational inequality problem and the solution set of fixed point problem with an infinite family of quasi-nonexpansive mappings in real Hilbert spaces. Based on the well-known proximal point algorithm and viscosity approximation method, we propose and analyze a new iterative algorithm for computing a common element. Under very mild assumptions, we obtain a strong convergence theorem for the sequence generated by the proposed method. Application to convex minimization and variational inequality problems coupled with inclusion problem is provided to support our main results.\,Our proposed method is quite general and includes the iterative methods considered in the earlier and recent literature as special cases.
کلیدواژه ها:
نویسندگان
- -
Amadou Mahtar Mbow University, Senegal