Video-based Facial Expression Recognition Using DensNet۱۲۱ andLSTM

  • سال انتشار: 1401
  • محل انتشار: اولین کنفرانس هوش مصنوعی و پردازش هوشمند
  • کد COI اختصاصی: AISC01_088
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 471
دانلود فایل این مقاله

نویسندگان

SeyedAman Zargari

Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran

Alireza Jarrah

Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran

Fahimeh Baghbani

Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran

چکیده

Facial expression is a non-verbal communication that emerges from humans' innerfeelings and allows us to be aware of people's emotions without verbal communication. Facialexpression recognition techniques are required in various today’s artificial intelligence-basedtechnologies such as automobile driving, human-machine interface, and market assistant. This studypresents an approach to classifying facial expressions using a Convolutional Neural Network (CNN)with Long Short-Term Memory (LSTM) network. Particularly, CNN (DenseNet۱۲۱) is used toextract the features of the incoming video frames. The pre-trained network DenseNet۱۲۱ is employedto surpass the need for a high number of training samples. LSTM network is employed for attainingthe temporal patterns of the sequence of images to avoid gradient explosion. Then, the facialexpressions are classified into seven different types of emotions (Anger, Disgust, Neutral, Sadness,Fear, Happiness, and Surprise). The results show that the proposed method reaches higherclassification accuracy (۷۲.۷۶%) than three other competing methods on the BAUM-۱ dataset.

کلیدواژه ها

Facial Expression, Long Short-Term Memory, Transfer Learning, Convolutional Neural Network

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.