ائه یک روش تشخیص بیماری مزمن کلیوی با بهره گیری از الگوریتم های SHAP و XGBoost
- سال انتشار: 1401
- محل انتشار: اولین کنفرانس هوش مصنوعی و پردازش هوشمند
- کد COI اختصاصی: AISC01_053
- زبان مقاله: فارسی
- تعداد مشاهده: 986
نویسندگان
دانشجوی کارشناسی دانشکده مهندسی برق و کامپیوتر، دانشگاه سمنان
دانشکده مهندسی کامپیوتر، دانشگاه صنعتی امیرکبیر
استادیار دانشکده مهندسی برق و کامپیوتر، دانشگاه سمنان
چکیده
بیماری مزمن کلیوی یکی از عوامل مهم مرگ و میر در جهان است. پیش بینی و پیشگیری از این امر ضرورت اساسی برای بهبود بهداشت و درمان می باشد. لذا برای این پیش بینی باید از الگوریتم ها و مدل هایی بهره برد که دارای کمترین خطا و بیشترین دقت و اطمینان باشند. یادگیری ماشین زمانی که در مراقبت های بهداشتی بکار می رود قادر به تشخیص زود هنگام و دقیق بیماری است. تشخیص بیماری از روی ویژگی های مختلف و جلوگیری از تشدید بیماری یکی از مهم ترین کاربردهای داده کاوی و کشف دانش در بیماران کلیوی است. در این مقاله سعی شده است با ارائه روشی تفسیرپذیر و دقیق و مقایسه آن با روش های پیشین، بیماری مزمن کلیوی را تشخیص و مهم ترین ویژگی های تاثیرگذار در این بیماری را توسط مدل تعیین کرد. بدین منظور از الگوریتم XGBoost به منظور پیش بینی بیماری مزمن کلیوی استفاده شده است و خروجی مدل با استفاده از الگوریتم SHAP تفسیر شده است. از مزایای روش پیشنهادی، می توان به کارایی و دقت بالا و تفسیرپذیری خروجی ها اشاره کردکلیدواژه ها
هوش مصنوعی، یادگیری ماشین، تشخیص پزشکی، بیماری مزمن کلیویمقالات مرتبط جدید
- سودآوری مشتریان در خردهفروشی قطعات یدکی ماشین آلات راهسازی با رویکرد یادگیری ماشین
- ارائه روشی کارآمد جهت شناسایی کودکان نیازمند به پیوند مغز استخوان با استفاده از ترکیب طبقه بند ماشین بردار پشتیبان و الگوریتم بهینه سازی فاخته
- استخراج بهینه پارامترهای تاثیر گذار الگوریتم بهینه سازی بوفالوی آفریقایی با هدف استخراج ویژگی های مهم به منظور افزایش کارایی طبقه بندی داده ها
- ارائه روشی کارآمد برای بهبود عملکرد الگوریتم بهینه سازی کلاغ سیاه به منظور افزایش صحت خوشه بندی داده ها
- استفاده از الگوریتم باور بیزین در لایه کاملا متصل شبکه عصبی کانولوشن با هدف افزایش دقت تشخیص تصاویر
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.