Projection of Agricultural Land Changes Using Hybrid Cellular Automata and Machine Learning: A Case Study of Babil, Central Iraq

  • سال انتشار: 1401
  • محل انتشار: سومین کنفرانس بین المللی و ششمین کنفرانس ملی صیانت از منابع طبیعی و محیط زیست
  • کد COI اختصاصی: CNRE06_221
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 237
دانلود فایل این مقاله

نویسندگان

Hossein Etemadfard

Assistant Professor, Civil Engineering Department, Ferdowsi University of Mashhad, Iran

Ahmed Hussein Shilb Algawwam

M.Sc. Student, Civil Engineering Department, Ferdowsi University of Mashhad, Iran.

Rouzbeh Shad

Associate Professor, Civil Engineering Department, Ferdowsi University of Mashhad, Iran

Marjan Ghaemi

Visiting Professor, Civil Engineering Department, Ferdowsi University of Mashhad, Iran.

چکیده

This research aimed to study mapping of agricultural lands, assess their changes, and predict their future scenario in Al-Hillah, Babylon province, Iraq during ۲۰۰۰-۲۰۲۱. The main objectives of the research include developing classification models based on machine learning, analyzing changes of agricultural lands using statistical methods, and predicting future change scenario using a hybrid Cellular Automata (CA) and machine learning model. To improve the accuracy of prediction, this research integrated several driving forces with the historical agricultural land maps to perform the prediction task. The main datasets used for this research were Landsat TM, ETM, and OLI images, as well as several Geographic Information System (GIS) layers including digital elevation model, waterways, population density and vegetation indices. The results indicated that KNN is the best classification as it performed better than the three models. KNN achieved an OA of ۰.۹۵۴, ۰.۹۵۶, and ۰.۹۶۶ for the image data ۲۰۰۰, ۲۰۰۸, and ۲۰۲۱, respectively. Optimizing models’ hyperparameters yielded better classification accuracies in many occasions except SVM for the image data ۲۰۰۰ and KNN for the image data ۲۰۲۱. The assessment of spatial distribution of urban and agricultural lands showed that urban area growth was centric outwards from the city center and the latter expanded to encompass the surrounding areas from ۲۰۰۰ to ۲۰۲۱. The projection of agricultural change demonstrated that agricultural lands in ۲۰۳۴ is expected to be ۳۵۷.۶ km۲.

کلیدواژه ها

GIS, LcLu, Remote Sensing, CA, Iraq

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.